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Introduction 
Airborn sound insulation is one of the main methods 

for noise reducation in rooms and in production. The main 
property of airborne sound insulation that predetermines its 
effectiveness is the density (mass) of insulation material. 
However, the most recent theoretical and experimental 
study and their results have shown that the effect of that 
property on airborne sound insulation can vary in 
dependence on the localisation of sound insulation 
materials in the construction and their performance. 

The present paper deals with some of the properties of 
sound insulation constructions. 

General outlines of airborne sound insulation of a 
Barrier 

The mechanism of airborne sound insulation by a 
barrier consists of the fact that a sound wave that is 
incident on a barrier drives it into a vibratory motion with a 
frequency that is equal to the frequency of vibrations of 
airborne particles in a wave. As a result, the barrier 
becomes the source of sound and radiates it into the 
isolated room. For acoustical characteristics of a barrier the 
concept of the coefficient of sound penetration  
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and of an airborne sound insulation are introduced 
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where p(ϑ), p(ϑ) is the pressure in a sound wave, which 
is incident on a barrier and passing through it at an angle 
ϑ. 

At a diffusion incidence of sound waves, the concept 
of the diffusion coefficient of sound penetration is being 
introduced, which represents the static value of sound 
penetration through a barrier at all possible angles of 
incident sound, i.e., 
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Accordingly, the airborne sound insulation  

τ
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Two approaches exist for calculation of airborne sound 
insulation of a barrier. The first one, which was proposed 
by L. Cremer [1], consists of the following.  

Having studied the insulation properties of a thin plain 
sheet (plate) L. Cremer showed that they depend on 
relative values of phase velocities cf (motion velocity of a 
sound wave trace along the plate) and cu (propagation 
velocity of sound in the plate). With changes in frequency 

or the incidence angle of sound waves the velocity cf can 
become equal to the velocity cu, i.e.,  

,
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ccc fu ==   (5) 

where c is the sound velocity in the air. 
In this case a well-known phenomenon of wave 

coincidence appears and airborne sound insulation 
becomes low. The lowest frequency where wave 
coincidence is possible is called the critical (boundary) 
frequency and it corresponds to the “sliding” incidence 
angle of sound waves, where c = cu.  

Th. Vogel applied another approach of problem 
solving [3] when studying the plates of finite dimensions. 
According to his research, the major part of sound energy 
transmitted through the plate is related with its mode of 
vibrations, excited at sound wave incidence. If to consider 
the expression of the energy transmitted in the form of a 
series, each terms of which is determined by the difference 
between the frequency of excitation and its 
eigenfrequency, the major part of energy passed belongs to 
the resonance terms. 

These two approaches are almost similar, if to consider 
the bending wave as natural vibrations, i.e., as 
eigenvibrations. The main result of these two approaches is 
that the equalization of wavelengths or frequencies of a 
sound wave and frequencies of eigen vibrations leads to 
the airborne sound insulation of a barrier that becomes 
low. Since the wall resistance at the resonance comes 
through a zero value, its value will be less than the 
resistance of the mass at the absence of resilient forces 
within the limits of some range of frequencies, containing 
the resonance frequency. Therefore in these both cases of 
resonance the value of airborne sound insulation will be 
less than it is determined by a simple “mass law”.  

In addition, the insulation of airborne sound, evidently, 
depends on the shape of barriers. This is predetermined by 
the effect of different character of one and the same sound 
wave on barriers of different shapes as well as on the 
different types of vibrations of these barriers. However, an 
approach to solving a problem as well as some basic 
statements of airborne sound insulation, probably, will be 
the same. Issues of airborne sound insulation of plates have 
been studied most extensively. 

Airborne sound insulation of double leaf 
constructions from the resilient wall containing 
viscous surface 

A wide application of absorbing surfaces in 
engineering constructions causes a certain interest to 
calculation schemes, containing a description of the 
condition of absorbing layers in the process of vibrations. 
Commonly, damping is accounted by the introduction of 
complex moduli of resilience. In the present report 
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damping material is considered as a layer of resilient 
material, working on the displacement. The effect of 
viscosity on airborne sound insulation of a layered 
construction will be naturally noticeable only at high 
frequencies, i.e., at random vibrations with a wide 
spectrum, impacts, etc.  

The frequencies of a plate, loaded on both sides by a 
pressure difference, are expressed by the following 
equation:  
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where B, h, ρ are the cylindrical rigidity, thickness and 
density correspondingly, u is the displacement; x is the 
coordinate, directed along the plate in the plane of 
incidence of outer wave pressure; σzz is the normal to the 
plate of tensor component of viscous tension; ω is the 
angular frequency of vibrations. 

For accounting of viscous resistance of the 
environment it is sufficient to take into account only a 
displacement potential, since the compressibility of an 
absorbing surface is of no considerable importance. 

Let axis z be directed along the normal to the layers. 
Then the displacement potential is determined by an 
equation: 
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Moreover, velocity components  zu&  and  xu&  , the 
value σzz are determined through f in the following 
way: 
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Here η and ρ0 is the displacement viscosity and the 
density of the environment. 

For the equation used the boundary-value problem is 
being set: 
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The solution of that problem is written in the form: 
( ));cossin zBzAef tiiqx ℵ+ℵ= − ω  
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Constants A and B are determined from boundary 
conditions and thus we find: 
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Now we can determine a tensor component σzz at  
z=0: 

.2 Htguzz ℵℵ=
•

ησ   (12) 
We note that for a thick layer of surface the following 

equation takes place |ℵH|>>1: uizz &ωηρσ 02= , since ℵ 
has a complex value. 

From here it is evident that use of too thick layers 
with a free surface does not lead to the efficient results. In 
the case of a thin layer  tgℵH≅ℵH and, consequently,  

( ) .2 0
•

≅ uHizz ωρσ   (13) 
Thus too thin layers also do not lead to the effect of 

damping. 
Now, excluding a tensor component σzz with the help 

of the formula (12), we come to the following equation of 
plate motion: 

;21
2

4

4
ppufiuh

x
uB −=+−

∂

∂ ωωρ ,2 Htgf ℵℵ= η  

,2 Htgf ℵℵ= η  
i.e., we obtain a usual problem of airborne sound 
insulation, taking the incident, reflected and transmitted  
waves as factors acting on the plate: 
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where θ is the plane wave incidence angle. 
For a transmission coefficient we find the following 

solution: 
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We find airborne sound insulation: 
.lg10 2α−=R   (14) 

Airborne sound insulation of symmetrical four-
layered system with airborne space and damping 
layers 

Let two plates, supplied with absorbing surfaces, be 
separated by an air space with a thickness l. The problem 
of airborne sound insulation is related to the determination 
of the transmission coefficient α of the wave, transmitted 
though a layered system:  
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Barrier constructions of such a type possessing good 
thermal insulation properties can be used successfully also 
for solution of problems of optimal sound insulation.  

The given system of solutions of the wave equation 
contains four constants, which we shall define from the 
algebraic system of equations at substituting these 
solutions into boundary equations: 
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The system obtained leads into the following system of 

4th order 
{ } { } ;121 =−+ µγβ QQ  

;1=+− µγβ  

{ } ;02
cos

3 =
Θ−

c
li

eQ
ω

σα  

.0
coscos

=−−
Θ−Θ

c
li

c
li

ee
ωω

γβα  
Here 

;sincos1 1
2

1

4

1
0

1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ Θ

Θ
+= fih

c
B

c
iQ ωωρω
ωρ

 

;sincos1 1
2

11

4

1
0

2
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ Θ

Θ
−= fih

c
B

c
iQ ωωρω
ωρ

 

;sincos
2

2
22

4

2
0

3
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ Θ

Θ
= fih

c
B

c
iQ ωωρω
ωρ

 

Solution of the given system can be written in the form 
α=4⁄∆: 
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Here, 
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Mechanical models of three-layered sound 
insulation constructions with a light filler 

At present three-layered symmetrical constructions 
filled with glasswool, porious materials or with 
honeycomb fillers are widely popular.   

Calculation of similar products with the help of three-
dimensional equations of theoretical resilience is complex 
and from the engineering point of view is too detailed , 
since the behaviour of a filler, strictly speaking, cant be not 
subject of the rheology of the solid resilient body. Two 
types of fillers are being considered in the literature: filler 
operating on the contraction and filler operating on the 
displacement. In the first case we obtain the following 
equation for a three-layered plate: 
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where  E is the Young’s modulus of the filler;  l is the layer 
thickness. In the second case 
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where G is the displacement modulus of the filler; l is its 
thickness. 

The corresponding problem of airborne sound 
insulation leads to the following transmission coefficient: 
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where B, ρ, h are the parameters of the plate. 

Conclusions 

Airborne sound insulation of the construction depends 
on the mass of the barrier, its dimensions, joints with other 
constructions, the physical and geometrical indicators of 
the latter, the frequency of vibrations, and the angle of 
sound wave propagation. 

The specific features of insulation materials are 
characterised by the ranges of their resonance frequencies. 

Research of airborne sound insulation double sheet 
and multi-layered constructions shows that airborne sound 
insulation of the said constructions can be improved 
without increasing the mass of the construction. 
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D. Gužas 

Orinio garso izoliacijos ypatumai 

Reziumė 

Ištirta kai kurių konstrukcijų orinės garso izoliacijos savybės, kurios 
leidžia pagerinti konstrukcijos garso izoliaciją, nedidinant konstrukcijos 
masės. Nustatyta, kad konstrukcijos orinė garso izoliacija priklauso nuo 
atitvaros masės, matmenų, sandurų su kitomis konstrukcijomis, fizinių ir 
geometrinių rodiklių, nuo virpesių dažnio, garso bangų sklidimo kampo ir 
kt. Konstrukcijų išorinė garso izoliacija priklauso nuo rezonansinių 
dažnių diapazonų medžiagose. 
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