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Introduction 

Holography is a powerful flow diagnostic for visualising 
and analyzing a variety of physical and engineering 
problems. Fluid holography in its turn enables effective 
analysis of high speed flow problems, high frequency 
vibrations of micro-scale components and fluids in dosing 
and contacting units, high speed processed taking place in 
biological and chemical microsystems. The investigation of 
the high frequency vibrations of the fluid is an important 
problem in the design of various devices.  

Though the production stage of the interferograms is 
technically not extremely complicated, the interpretation of 
the produced fringes faces a huge number of mathematical 
and numerical problems. That is firstly related with the 
complex geometry of the phase-shifting media. Under such 
circumstances the density can change along the line of the 
sight, and the density is no longer proportional to phase. The 
reconstruction of the phase involves application of an Abel 
deconvolution [4] what makes the direct fringe interpretation 
almost impossible. Therefore, development of hybrid 
numerical – experimental fluid holographic methods is 
important both for the interpretation of experimental results, 
both for the analysis of systems in the virtual environments 
by generating realistic interferograms.  In this paper the 
method of holographic interferometry is used for the analysis 
of the two-dimensional fluid problem. 

Numerical model of the system 

The two-dimensional problem of vibrations of the 
potential ideal compressible fluid under the assumption of 
constant density in the status of equilibrium is described by 
the equation [1, 2]: 
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where φ is the velocity potential; c − the velocity of sound; t 
− time; x and y − orthogonal cartesian coordinates.  

The free surface boundary condition on the surface 
y = const is: 
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where g is the acceleration of gravity. 

The stiffness and mass matrixes of the fluid are: 
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where N is the row matrix of the shape functions of the finite 
element, B is the matrix the rows of which are the derivatives 
of the shape functions with respect to x and y, ( )xN  is the 
row matrix of the shape functions of the one-dimensional 
finite element at the free surface y = const. 

In order to obtain the nodal velocities the conjugate 
approximation [3] is used. The values of velocities at the 
points of numerical integration of the finite elements are 
obtained as: 
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where δ stands for the vector of nodal values of the velocity 
potential for the analyzed finite element. Then the nodal 
values of the velocities are obtained by solving the following 
systems of linear algebraic equations: 
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where the summation operator stands for the direct stiffness 
procedure [5, 6], vector columns { }uδ  and { }vδ  are the 
nodal values of the velocities in the x and y directions 
respectively of the global structure. 
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Construction of the holographic image 

The phase of the light from the laser beam is [4]: 
 

 ( ) ( )[ ]hyxnnyx flow ,2, 0 −=Ψ
λ
π , (7) 

 
where h is the distance that the light travels through the fluid, 
λ is the wavelength of the laser beam, n0 and nflow  are the 
refractive indexes in the initial and flow conditions 
respectively. 

The refractive index is expressed as [4]: 
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where ρ0 is the density constant in the region of the flow in 
the status of equilibrium, β is the constant of proportionality. 

From the previous relationships it follows that: 
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where the initial phase ψ0 and the coefficient of 
proportionality k are expressed like: 
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Further it is assumed that: 
 
 ( ) ( ) 0,,,,~ ρρρ −= tyxtyx flow , (12) 
 

where the deviation of the density from the density in the 
status of equilibrium is small: 
 

 ( ) 0,,~ ρρ <<tyx . (13) 
Then: 
 
 ( ) ( )tyxkyx ,,~, 0 ρ−Ψ=Ψ , (14) 
 

where 
 000 ρk−Ψ=Ψ . (15) 
 
From [1, 2] it is known that: 
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Further it is assumed that the density and the velocity 
potential are harmonically varying in time: 

 
 ( ) ( ) ( )tyxtyxflow ωρρρ cos,~,, *

0 += , (17) 
 

and 
 
 ( ) ( ) ( )tyxtyx ωφφ sin,~,, *= , (18) 
 

where ω particularly can coincide with the frequency of 
oscillations of the appropriate eigenmode. 

Eq.(16) together with the previous equations gives: 
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So after performing the initial calibration of the phase of 

the laser beam its intensity I for the stroboscopic image can 
be expressed as: 

 
 ( ) ( )( )yxayxI ,~cos, *2 φ= , (20) 
 

where the coefficient a can be expressed from equations (14) 
and (19): 
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Numerical investigation 

The rectangular domain is analysed. The upper surface is 
assumed to be a free surface. The periodic boundary 
conditions in the x direction are assumed: that is the values of 
the velocity potential on the left and the right boundaries for 
the same values of the y coordinate are assumed to be 
mutually equal. 

The eigenmodes are calculated and on their basis the 
eigenmodes of nodal velocities are obtained by using the 
conjugate approximation. 

The fifth and the tenth eigenmodes are shown in Fig. 1 
and Fig. 2. The obtained stroboscopic holographic images for 
the same eigenmodes are presented in Fig. 3 and Fig. 4. 

Conclusions 

The method of holographic interferometry is 
successfully applied for the two-dimensional problem of 
vibrations according to the eigenmode by using the 
stroboscopic method lightening the structure in the state of 
extreme deflections. 
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Fig. 1. The fifth eigenmode (black solid lines) and the mesh in the status of equilibrium (grey lines) 

 

 
 

Fig. 2. The tenth eigenmode (black solid lines) and the mesh in the status of equilibrium (grey lines) 

 

 
 

Fig. 3. The stroboscopic holographic image for the fifth eigenmode 

 

 
 

Fig. 4. The stroboscopic holographic image for the tenth eigenmode 
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M. Ragulskis, A. Palevičius, L. Ragulskis 

Hibridinė skaitinė - eksperimentinė skysčių holografinė 
interferografija: dvimatės slegiamos skysčio plėvelės 

Reziumė 

Sukurtas skaitinis skysčių holografinės interferografijos metodas 
slegiamo skysčio analizei. Pirmajame etape parodyta, kaip metodas gali būti 
pritaikomas dvimatėms slegiamo skysčio plėvelėms, virpančioms aukštu 
dažniu. Metodo plėtros procese išspręsta nemaža skaitinių ir matematinių 
problemų.  
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